
Relevance of the land use changes related to a megacity development in a Colombian river basin

Alicia García-Arias (algarar2@upv.es), Claudia Patricia Romero Hernández, Félix Francés

INTRODUCTION

- **Megacity development** (e.g. Bogotá) → main driving force for **land uses changes**
- Population rise depends on the **natural resources** available in the occupied area:
 - **Water** → pivotal requirement
- Science gap: **interactions between land-use change and hydrologic processes** will be a major issue in the decades ahead (DeFries and Eshleman, 2004)

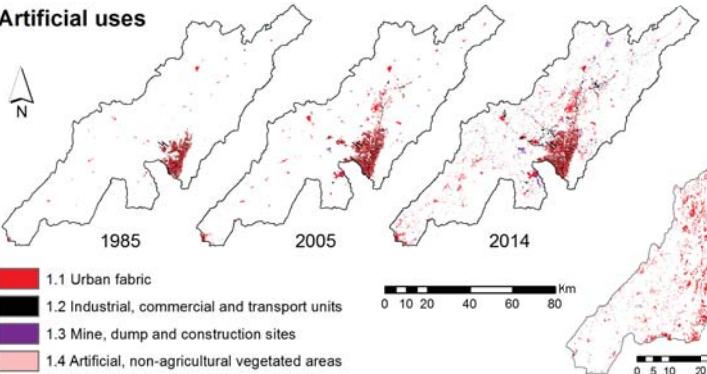
CASE STUDIES

IMPLICATIONS IN DISTRIBUTED HYDROLOGICAL MODELLING

Highlights relating land use changes and water resources management:

Anthropogenic land use changes: main driver for hydrological changes (alterations in streamflow patterns) → **URBANIZATION** (most forceful)

- **Increase of agricultural and urban uses** → **changes in water demands** (artificial and agricultural uses requirements)
- **Reduction in forest cover** → decrease in evapotranspiration and groundwater recharge → **increase in discharge and flood peaks**
- Need of advanced tools for water resources management (spatially distributed hydrological modelling able to consider these land use changes)
 - **Mathematical modelling for a reliable prediction of the hydrological effects related to land-use changes** is in an early stage of development (Beven, 2000) → rational method / USDA-SCS curve number approach (widely used to explain hydrological response of land use changes)
 - **Landsat imagery** provide **spatial distribution of land coverages** → large areas, frequent time intervals → changes can be analyzed (Hansen *et al.*, 2013)


Hydrological modelling → parameters related to land use determine the hydrologic variables

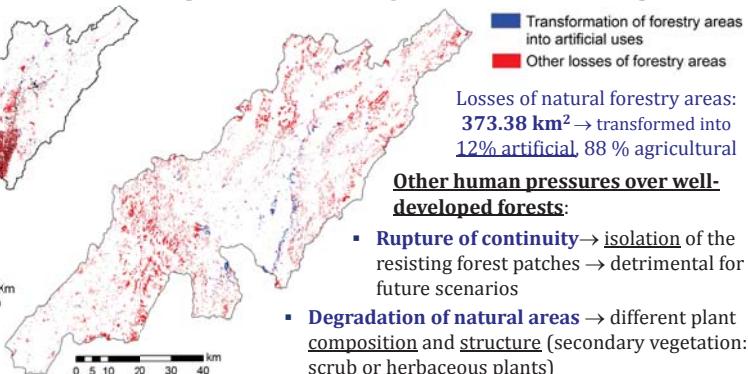
Approach: Proposed changes to be implemented in the **TETIS distributed hydrological model** (Francés, Vélez and Vélez, 2007):

- **Land use parameters** → I_{max} , λ_v , H_u , k_s → consideration of **two sets of parameters**: **urban** (including industrial, commercial, transport and any other land cover with low permeability and evapotranspiration capacity) and **non-urban** including forestry areas, agricultural lands and other artificial vegetated areas.
 - **Each set of parameters** should be calculated considering the **surface occupied by each type of uses** in the cell (**proportion of the different urban uses** in the first set, **proportion of the non-urban uses** in the second set)
- **Hydrological fluxes** → calculated separately for urban/non-urban and **weighted** after by the proportion of **urban/non-urban land cover**

LAND USE CHANGE ANALYSIS

Artificial uses

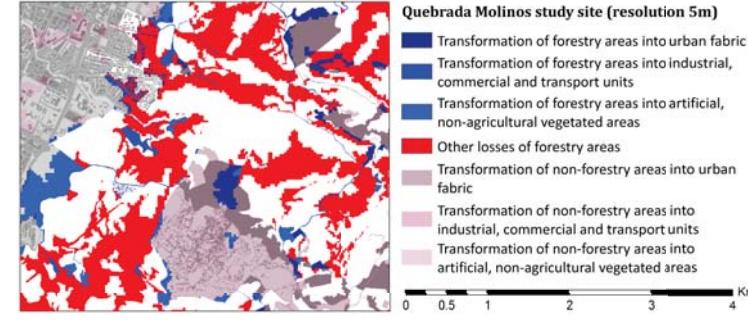
Bogotá River basin (period 1985-2014)


Land use changes → 3061.56 km² (55.95 % basin surface)

▪ Transformations into **artificial uses**:

Agricultural lands and forests → **416.28 km²** (13.6 % of land use changes)

- **heterogeneous agricultural uses and pastures** → important role in the urbanization process (**88.96 % of the change into artificial surfaces**)
- **natural forestry area lost** → **44.55 km²** (**68.4 % dense forests**, **9.4 % páramo ecosystems**, **22.2 % open spaces with little or no vegetation**)


Importance of forest fragmentation under human pressures

Losses of natural forestry areas: **373.38 km²** → transformed into **12% artificial**, **88 % agricultural**

Other human pressures over well-developed forests:

- **Rupture of continuity** → **isolation** of the resisting forest patches → detrimental for future scenarios
- **Degradation of natural areas** → different plant **composition** and **structure** (secondary vegetation: scrub or herbaceous plants)

CONCLUSIONS

1. Knowledge on land uses (cover distribution and characteristics) and its integration in hydrological modelling approaches leads to an efficient management of water resources
2. Extrapolating results to other systems can be challenging → Better option: focus efforts in developing robust and friendly methodologies/tools for the analysis of each case study
3. Reliable future scenarios can be provided for management by combining land use change analysis and the proposed distributed hydrological modelling approach

ACKNOWLEDGEMENTS AND REFERENCES

This research was funded by the **Spanish Ministry of Economy and Competitiveness** through the **TETISMED project** (CGL2014-58127-C3-3-R) and by the **Universidad Santo Tomás**

References:

- Beven KJ. 2000. *Rainfall-Runoff Modelling: The Primer, Second Edition*. John Wiley: Chichester. ISBN: 978-0-470-71459-1. 488 pages.
- DeFries R, Eshleman KN. 2004. Land-use change and hydrologic processes: a major focus for the future. *Hydrological Processes*, 18:2183–2186. DOI: 10.1002/hyp.5584
- Francés F, Vélez JI, Vélez JJ. 2007. Split-parameter structure for the automatic calibration of distributed hydrological models. *Journal of Hydrology*, 332(1-2):226–240. DOI: 10.1016/j.jhydrol.2006.06.032
- Hansen MC, Potapov PV, Moore R, Hansen M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG. 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. *Science*, 342(6160):850-853. DOI: 10.1126/science.1244693