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 Problem: hydrological models provide predictions, which 
are not lacking of uncertainty 

 

 Uncertainty sources: 
 Observed data: forcings, state variables, characteristics 

and boundary conditions 
 Model structure 
 Parameters estimation 

 

 If calibration, calibrated parameters are a sinkhole of 
uncertainty 
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 Additive uncertainty model: for the state variable of 
interest, the difference (Error) between observed and 
simulated values can be modeled 
 

 
 Classical approach: i.i.d. Gaussian 
    Errors 
 It is equivalent to Standard Least  
   Squares (SLS) calibration 

 

Introduction 

3 

( )1: 0, , , ε= + 

t t h e t tQ E θ θ X S



HIC 2014 – 11th International Conference on Hydroinformatics 
New York, USA      August 17 – 21, 2014 

 Additive uncertainty model: for the state variable of 
interest, the difference (Error) between observed and 
simulated values can be modeled 
 

 
 Errors in Hydrology don’t 
   satisfy the SLS hypothesis 
 Non-Gaussian 
 Biased (even non-stationary) 
 Heteroscedastic 
 Autocorrelated  
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 Aims of this work: 
 
 Infer Specific Error Model (EM2) that best fit 

Hydrological Model Additive Errors in a case study 
(model + catchment) 

 
 Compare the performance of SLS vs EM2 
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 Formal Bayesian Joint Inference approach: 
 
 Target: The Posterior of Hydrological and Error models 

parameters 
 
 Development of an appropriate Likelihood function 

 

 Non-Informative Priors for the inferred parameters 
 

 MCMC Posterior sampling algorithm: DREAM_ZS 
 C. Ter Braak, J. Vrugt, Differential Evolution Markov Chain with snooker updater and fewer chains, Stat. Comput. 18 (2008) 435–

446. doi:10.1007/s11222-008-9104-9 

 

 
 

EM2 description (1/4) 
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 Obtaining the (stationary) Likelihood 
 

 Modeling the shape of Errors Conditional Distributions 
 Skew Exponential Power (SEP) 

 
 

 
 

 Modeling the dependence: AR models 
=> A renewed Generalized Log-Likelihood Function 

 
 

 
 
 

EM2 description (2/4) 
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Picture taken from: Schoups, G., and J. Vrugt (2010), A formal likelihood function 
for parameter and predictive inference of hydrologic models with correlated, 
heteroscedastic, and non-Gaussian errors, Water Resour. Res., 46(10), 1–17, 
doi:10.1029/2009WR008933 
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 Introducing the Non-Stationarity in the Likelihood 
 For the Variance: 

 

 For the Bias: 
 
 

 Variance and Bias parameters are not free, because 
Total Laws must be enforced  
 Total Variance Law (TVL) 

 
 Total Expectation Law (TEL) 

 
 

 

EM2 description (3/4) 
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 Prediction model: Hydrological model + EM2 
 

EM2 description (4/4) 
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 Distributed Hydrological Model             TETIS 
 Runoff production and propagation: 

 Traditional schemes used in modeling, but adapted to cell scale 

 Effective Parameter Structure divided in two components:  
 Estimated Value at each cell: parameter maps 
 Global Calibrated Correction Factor applied to each 

map 
 

 
 

 
 

 

 

Hydrological Model 
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Model divergence phenomenon 

11 

 
 
 
 
 
 

SLS   EM2 

CALIB VALID 
% 

CHANGE CALIB VALID 
% 

CHANGE 

HYDRO MODEL 

NSE 0.93 0.86 7% 0.74 0.72 3% 

RMSE 2.62 3.48 33% 5.00 4.99 0% 

ErrVol (%)   2.40 -4.5 88%   9.90 2.70 73% 

MEAN 
PREDICTION 

NSE 0.91 0.85 7% 

RMSE 2.92 3.60 23% 

ErrVol (%) 0.01 -3.70 
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Prediction performance 
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 A 643 mm for Soil Capillary Storage isn’t realistic 
 SLS underestimates the aquifer response 

 
=> SLS converts a conceptual hydrological model into a 
data driven-model 

Parameters physical meaning 
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MAP MEAN
VALUE

SLS
CORRECTION

EM2
CORRECTION

SLS
VALUE

EM2
VALUE

Hu (mm) Soil Capillary Storage 214.49 X   3 X   0.81 643.47 173.74

Kss (mm/day) Interflow hydraulic cond. 1.8 X   2508 X   4913 4514.40 8843.40

Ksa (mm/day) Aquifer hydraulic cond. 0.74 X   68 X   1038 50.32 768.12

PARAMETER
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Fulfillment of Error Models hypothesis 
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Fulfillment of Error Models hypothesis 
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Fulfillment of Error Models hypothesis 
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Homoscedasticity 
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Prediction uncertainty reliability 
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 95% uncertainty band for a sub-period of 280 days 
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Prediction uncertainty reliability 
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 Reliability of Predictions in Validation (I) 
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Prediction uncertainty reliability 
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 Reliability of Predictions in Validation (II) : QQPlots 
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Deterministic prediction 

Warning threshold 

PREDICTION WITH HYDROL. 
AND ERROR MODELS 

One example: decision making 
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 Errors in Hydrology very often don’t satisfy the SLS 
hypothesis. Consequences:  
 Biased parameter values and loss of physical meaning 
 Poor Parameter Uncertainty estimates 
 Incorrect estimation of Predictive Uncertainty 

 
 

=> With SLS calibrated parameters, model can work for 
the wrong reasons 

Conclusions 
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 Errors in Hydrology very often don’t satisfy the SLS 
hypothesis 
 

 It is possible to develop Error Models for a distributed 
Hydrological Model in a Bayesian Joint Inference 
framework, easily with a Split Effective Parameter 
Structure 

 

 Non-Stationary Error Models must consider the Total 
Laws for the Expectation and Variance 

 

 Be positive: uncertainty is reflecting our knowledge 
 

 

Conclusions 
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Thanks for your attention  
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