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Introduction
I S

a Problem: hydrological models provide predictions, which
are not lacking of uncertainty

0 Uncertainty sources:

> Observed data: forcings, state variables, characteristics
and boundary conditions

> Model structure
> Parameters estimation

Q If calibration, calibrated parameters are a sinkhole of
uncertainty
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Introduction

Q Additive uncertainty model: for the state variable of
Interest, the difference (Error) between observed and
simulated values can be modeled

~

Q=E (Oh’ﬂe’il:t’go)-l_gt

» Classical approach: i.i.d. Gaussian
Errors

(o
'.'-‘T "
= It is equivalent to Standard Least Error ‘
* l‘::I-E-im

Squares (SLS) calibration
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Introduction
I S

Q Additive uncertainty model: for the state variable of
Interest, the difference (Error) between observed and
simulated values can be modeled

Qt =E, (ﬂh,ﬂe,f(l:t,go)—l—gt

' MeanFredicti
> Errors in Hydrology don’t eanrredicton

satisfy the SLS hypothesis L
= Non-Gaussian

= Biased (even non-stationary)
m Heteroscedastic

= Autocorrelated
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Introduction
I S

a Aims of this work:

> Infer Specific Error Model (EM2) that best fit
Hydrological Model Additive Errors in a case study
(model + catchment)

» Compare the performance of SLS vs EM2
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<4 MM EM2 description (1/4)

0 Formal Bayesian Joint Inference approach:

> Target: The Posterior of Hydrological and Error models
parameters

p(01:[Q) = p(Qc) p(01)

» Development of an appropriate Likelihood function
I(Oh,e |5): p(()|9h,e): p(8|9h,e)

0 Non-Informative Priors for the inferred parameters

a MCMC Posterior sampling algorithm: DREAM_ZS

m C. Ter Braak, J. Vrugt, Differential Evolution Markov Chain with snooker updater and fewer chains, Stat. Comput. 18 (2008) 435—
446. doi:10.1007/s11222-008-9104-9
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<<a M2 EM2 description (2/4)

Q Obtaining the (stationary) Likelihood

> Modeling the shape of Errors Conditional Distributions
m Skew Exponential Power (SEP)

08

Picture taken from: Schoups, G., and J. Vrugt (2010), A formal likelihood function
for parameter and predictive inference of hydrologic models with correlated,
heteroscedastic, and non-Gaussian errors, Water Resour. Res., 46(10), 1-17,
doi:10.1029/2009WR008933

0.6

0.4

» Modeling the dependence: AR models
=> A renewed Generalized Log-Likelihood Function

20.W N N
L(6,.1€)=Nlog - (§§+ gl) —;Iog o, _Cﬂ;‘aﬁ

2
1+p
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<<a M2 EM2 description (3/4)

a Introducing the Non-Stationarity in the Likelihood
> For the Variance: f =6°+6,Q..

> For the Bias: f,=0;+6,Q.., Q. <6
fb = (96? + 97thsim Qtsim > 056

> Variance and Bias parameters are not free, because
Total Laws must be enforced

= Total Variance Law (TVL) |V(Q)=&[V(Ql)]+V. E(Qt)|=E [V (Qft) |+V [(Qun +bias)lt]

= Total Expectation Law (TEL) E(Q)=E | E(Qlt)]|=E [(Quy+bias)|t]
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<<a M2 EM2 description (4/4)

Q Prediction model: Hydrological model + EM2

Qtpred — Qtsim + bt + O-gt |:¢|;1 ( B)[O-zat ]:|

AQ

----8--- EXPECTED STREAMFLOW (BIAS CORRECTED)

—®—— SIMULATED STREAMFLOW (Qsim)
* OBSERVED STREAMFLOW

.""'_'_'_'_';_-; ERROR CONDITIONAL DISTRIBUTION
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Hydrological Model

0 Distributed Hydrological Model N TETIS

O Runoff production and propagation: http://llluvia.dihnma.upv.es
= Traditional schemes used in modeling, but adapted to cell scale

Q Effective Parameter Structure divided in two components:
> Estimated Value at each cell: parameter maps

> Global Calibrated Correction Factor applied to each
map

i
!
b
[

i

i

[LITTILTTTTTTH

X F2
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<<A Model divergence phenomenon

SLS

%
CALIB VALID CHANGE

NSE 0.93 0.86 7%
MSE 2.62 3.48 33%

HYDRO MODEL
ErrVol (%) 2.40 -4.5 88%
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Prediction performance
4

SLS EM?2
% %
CALIB | VALID |CHANGE CALIB VALID CHANGE
NSE 0.93 0.86 7% 0.74 0.72 3%
MSE 2.62 3.48 33% 5.00 4.99 0%
HYDRO MODEL
ErrVol (%) 2.40 -4.5 88% 9.90 2.70 73%
NSE 0.91 0.85 7%
MEAN RMSE 2.92 3.60 23%
PREDICTION
ErrVol (%) 0.01 -3.70
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ilama o .
Parameters physical meaning

o
<A

PARAMETER M?/ZE/IUEEAN CORF\?IE_?ITION CORIEI!I(?TION Vill__SE Villi/le
Hu (mm) Soil Capillary Storage 214.49 X 3 X 0.81 ‘ 643.47 173.74 ‘
Kss (mm/day) Interflow hydraulic cond. 1.8 X 2508 X 4913 4514.40 8843.40
Ksa (mm/day) Aquifer hydraulic cond. 0.74 X 68 X 1038 ‘ 50.32 768.12 ‘

0 A 643 mm for Soil Capillary Storage isn’t realistic
O SLS underestimates the aquifer response

=> SLS converts a conceptual hydrological model into a
data driven-model
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"am2 Eylfillment of Error Models hypothesis

<A

Standar innovations Normality
SLS EM2

i
|
/

Density

[

A
. 1 / . .\

X ’ . N
SN . 442'/.’/./ \‘\'h-_ .

05

0.4

03

0.2 / 0

o1 ﬁ C ) O E - N .
% -4 4 6

-2 0 2
Standard Innovations

Density
[l el e N i ol o NN
0 © N B N

-1 0 1 2
Standard Innovations

14

HIC 2014 - 11th International Conference on Hydroinformatics
New York, USA  August 17 - 21, 2014




a X
5 11a

<<2 "™ Fylfillment of Error Models hypothesis

|
Independence
SLS EM2

0.5 0.5

0.45f

0.4 0.4 _

0.35¢
c 03 c 03 .
2 o
& 0.25F E
© o
§ 0.2 § 0.2+ b
S 0.15- 2
2 o1l < 01} .
Q 2
S 0.05} =
line Lt § ole L le DI ool 1ot o [ 1] 1

| l lH I | I I l 7]

-0.05

-0.1f -0.1F .

-0.15

0% "5 10 15 20 25 30 35 40 45 50 0% 5 10 15 20 2 30 3 40 45 50

Lag (Days) Lag (Days)
HIC 2014 - 11th International Conference on Hydroinformatics 15
“ New York, USA August 17 - 21, 2014




a X
A 11a

<<2 "™ Fylfillment of Error Models hypothesis

|
Homoscedasticity
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<2 Prediction uncertainty reliability

0 95% uncertamty band for a sub-period of 280 days

NSE 0.88; RMSE = 2.76 ; ErrVoI% =-1.3 Prediction 95% Band
0or PRED 95% BANDWIDTH * Qobs —
o . MEAN = MAX = MIN = 10 —Qsimy, \p

S At | N 15 3 |
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\ \ T T Tlm? (Daysl) T T T T I | | | |

NSE,,  =0.82; RMSE, , =3.34;ErnVol % =-4.1 Prediction 95% Band

0 NSEHM =0.86; RMSHI’\EA =2097; El:r'\clol % =-6.2 * Qobs N
PRED ~ "7 PRED ~ <7 PRED"" ~ —_Qsim
I PREDICTION 95% BANDWIDTH MAP 1
EM2 MEAN = 4.8 ; MAX = 60.9 ; MIN = 0.3 Qpred,, -
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<A M Prediction uncertainty reliability

0 Reliability of Predictions in Validation (I)
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Prediction uncertainty reliability
4

0 Reliability of Predictions in Validation (Il) : QQPts
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Warning threshold

Deterministic prediction

PREDICTION WITH HYDROL.
AND ERROR MODELS
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Conclusions
[ 1S

a Errors in Hydrology very often don’t satisfy the SLS
hypothesis. Consequences:

> Blased parameter values and loss of physical meaning
» Poor Parameter Uncertainty estimates
> Incorrect estimation of Predictive Uncertainty

=> With SLS calibrated parameters, model can work for
the wrong reasons
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Conclusions
[ 1S

a Errors in Hydrology very often don’t satisfy the SLS
hypothesis

Q Itis possible to develop Error Models for a distributed
Hydrological Model in a Bayesian Joint Inference
framework, easily with a Split Effective Parameter
Structure

O Non-Stationary Error Models must consider the Total
Laws for the Expectation and Variance

Q Be positive: uncertainty is reflecting our knowledge
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