

1. INTRODUCTION

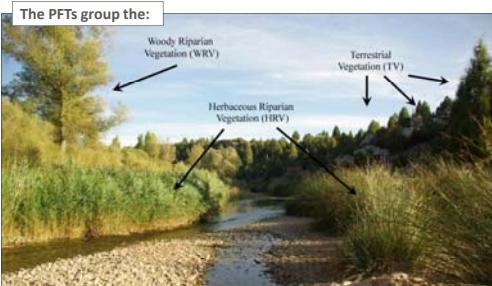
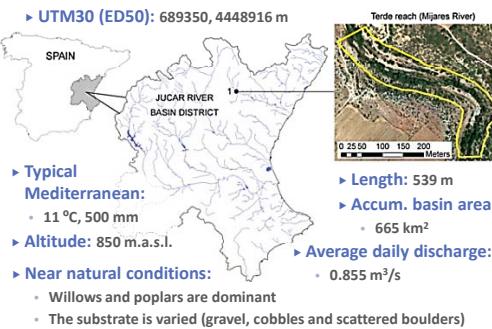
Vegetation of the riversides:

- Main part of the complex riparian ecosystems
- Important role maintaining fluvial ecosystems

Semi-arid Mediterranean areas → vegetation growth and distribution controlled by water accessibility

Human interventions → river hydrology alterations

- Determine riparian vegetation wellbeing and distribution

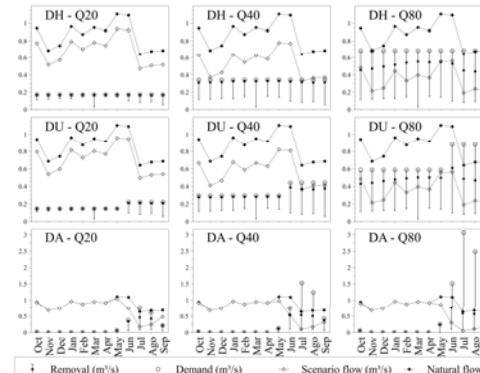
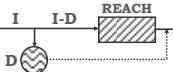


The RibAV model (García-Arias et al., 2013a):

- Reproduces the vegetation performance on the riverside through its evapotranspiration index, E_{idx} (relation between the actual ET calculated by RibAV and the potential ET corrected by the coverage factor of the analysed PFT)
- Allows scenarios analysis (vegetation distribution and wellbeing)

Scenarios analysis → theoretical alterations of the natural flow regime (Reference period : 1949-2009)

2. STUDY CASE

Terde reach (Júcar River, Spain)

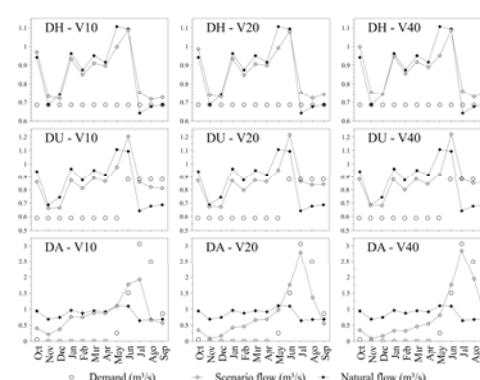



3. SCENARIOS

Water demand upstream scenarios:

the demands encompass different seasonality and magnitude

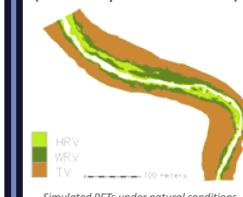
- **Seasonality:** hydroelectric demands (HD, constant all over the year), urban demands (UD, increased during the summer period) and agricultural demands (AD, monthly seasonality)
- **Magnitude:** varied considering the 20%, the 40% and the 80% of the mean daily flow (Q20, Q40 and Q80 respectively)

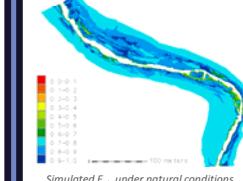


Flow regulation scenarios:

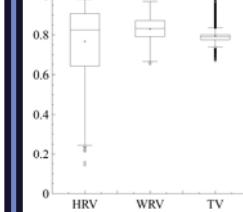
a theoretical upstream reservoir to attend the demands located downstream

- **Demand:** encompass different seasonality (HD, UD and AD) and a fixed magnitude of Q80


- **Reservoir capacity:** varied considering the 10%, the 20% and the 40% of the annual contribution (V10, V20 and V40 respectively)

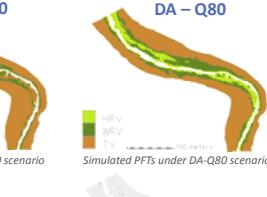

4. RESULTS

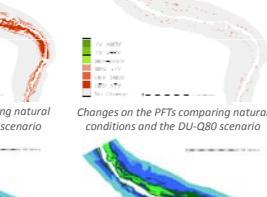
No Impact


(Reference period : 1949-2009)

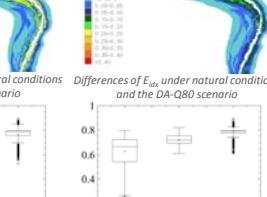
Simulated PFTs under natural conditions

Simulated E_{idx} under natural conditions


Differences of E_{idx} under natural conditions and the DU-Q80 scenario


Differences of E_{idx} under natural conditions and the DA-Q80 scenario

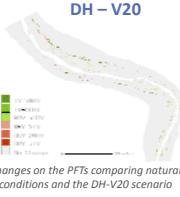
Water demand scenarios

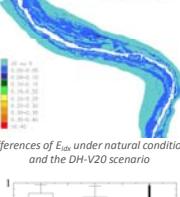

DU - Q80

Simulated PFTs under DU-Q80 scenario

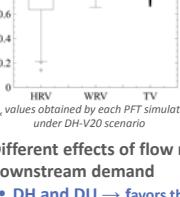
Changes on the PFTs comparing natural conditions and the DU-Q80 scenario

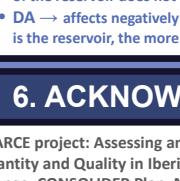
Differences of E_{idx} under natural conditions and the DU-Q80 scenario


E_{idx} values obtained by each PFT simulated under DU-Q80 scenario

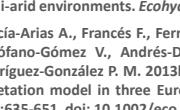

E_{idx} values obtained by each PFT simulated under DA-Q80 scenario

Flow regulation scenarios


DH - V20


Simulated PFTs under DH-V20 scenario

Changes on the PFTs comparing natural conditions and the DH-V20 scenario


Differences of E_{idx} under natural conditions and the DH-V20 scenario

E_{idx} values obtained by each PFT simulated under DH-V20 scenario

Differences of E_{idx} under natural conditions and the DA-V40 scenario

E_{idx} values obtained by each PFT simulated under DA-V40 scenario

6. ACKNOWLEDGEMENTS

SCARCE project: Assessing and Predicting Effects on Water Quantity and Quality in Iberian Rivers caused by Global Change. CONSOLIDER Plan, Ministerio de Ciencia e Innovación (ref: CSD2009-00065). <http://www.idaea.csic.es/scarceconsolider>

5. CONCLUSIONS

RibAV model is useful to predict the impact of water demand and river flow regulation on the riparian vegetation

Hydroelectric and urban demands upstream → riparian vegetation (especially HRV) is replaced by TV

- The higher is the magnitude, the bigger are the impacts
- The E_{idx} of the riparian PFTs is lower, the wellbeing of TV is favored

Agricultural demands upstream → riparian vegetation less impacted than with DH or DU

- No many differences when the magnitude increases. Zones more affected: limits between 2 PFTs
- E_{idx} lower but not enough to affect the vegetation distribution

Flow regulation can favor the riparian vegetation in short term

- Riparian plant communities aging promotes the replacement by terrestrials in the long term → Necessity to consider flood impacts on the Riparian zone (García-Arias et al., 2013b)

7. REFERENCES

García-Arias A, Francés F, Morales-de la Cruz M, Real J, Vallés-Morán F, Garofano-Gómez V & Martínez-Capel F. 2013a. Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments. *Ecohydrology*. DOI: 10.1002/eco.1387

García-Arias A, Francés F, Ferreira T, Egger G, Martínez-Capel F, Garofano-Gómez V, Andrés-Doménech I, Politti E, Rivas R, Rodríguez-González P. M. 2013b. Implementing a dynamic riparian vegetation model in three European river systems. *Ecohydrology*. 6(4):635-651. doi: 10.1002/eco.1331