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APLICACION DE UN MODELO CONCEPTUAL DISTRIBUIDO DE VEGETACION DINAMICA A UNA
CUENCA SEMIARIDA DEL SURESTE DE ESPANA

M. Pasquato', C. Medici', F. Francés'
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RESUMEN. En este trabajo se ha implementado a nivel
distribuido un submodelo de vegetacion dinamica
desarrollado a escala de parcela por Quevedo y Francés
(2005) y Quevedo (2010); se ha acoplado a un modelo
hidroldgico ya existente, TETIS (Vélez et al. 2009, 2007;
Francés et al., 2007, 2002), dando origen al modelo
TETIS-VEG. El modelo TETIS-VEG reproduce los
fendémenos de crecimiento de las plantas y de caida de
hojas estacional o causada por el estrés hidrico. Tiene en
cuenta, ademas, la regulacion de la transpiracion por parte
de las plantas debida a variaciones de la humedad del
suelo. Se ha aplicado el modelo a la cuenca de
Valdeinfierno (Espafia), contrastando los resultados
obtenidos con imagenes de NDVI provenientes de sensores
satelitales. La correlacion entre los valores del indice de
biomasa relativa (R) calculado por el modelo y los valores
de NDVI resulta positiva y significativa. El modelo
consigue ademas reproducir las diferencias de densidad de
vegetacion entre ladera norte y sur.

ABSTRACT. The aim of this work was to implement at a
distributed level a dynamic vegetation model developed at
plot scale by Quevedo and Francés (2005) and Quevedo
(2010), coupling it with the distributed hydrological model
TETIS (Vélez et al. 2009, 2007; Francés et al., 2007, 2002)
to obtain the so called TETIS-VEG model. This model
reproduces the plant growth and the leaf shedding, caused
either by the seasonal cycle or by water stress. Besides, it
takes into account the transpiration regulation performed
by plants, due to variations in the soil moisture content.
The model was tested in the Valdeinfierno catchment
(Spain) using MODIS NDVI images. A positive and
statistically significant correlation was found between
NDVI values and a relative biomass index (R) simulated by
the model. The model, furthermore, succeeds in
reproducing the differences in vegetation density between
northern and southern slopes.

1.- Introduccion

La vegetacion y el ciclo hidroldgico estan intrinsecamente
asociados. La humedad del suelo constituye la conexion
fisica entre el suelo, el clima y la vegetacion (Isham et al.,
2005). El balance hidrico local es fundamental para
explicar la distribucion (Stephenson, 1990) y la
productividad (Churkina y Running, 1998; Ciais et al.,

2005) de la vegetacion. Por otro lado, la composicion y
distribucion de las comunidades vegetales son de
fundamental importancia para evaluar la
evapotranspiracion y la generacion de escorrentia (Dunn y
Mackay, 1995).

Los ecosistemas en climas aridos y semidridos estan
controlados por la disponibilidad de agua: aunque haya
otras causas de estrés (fuego, pasto, disponibilidad de
nutrientes, etc.), la humedad del suelo es el recurso mas
importante que afecta a la estructura y a la organizacion de
la vegetacion. Las plantas mismas juegan un papel
importante en los sistemas aridos y semiaridos: tienen un
rol activo en el balance hidrolégico y sufren al mismo
tiempo las condiciones de aridez y estrés hidrico que ellas
mismas producen (Rodriguez-Iturbe et al., 2001). En
climas aridos-semiaridos se nota una correlacion negativa
entre insolacion y densidad de vegetacion en las
comunidades de coniferas y en algunas comunidades
arbustivas (Garcia-Pausas y Fons-Esteve, 1992; Gonzales-
Hidalgo et al., 1996a); esto se explica por ser la mayor
insolaciéon causa de mayor evapotranspiracion vy,
consecuentemente, menor humedad en el suelo (Gonzalez-
Hidalgo et al., 1996b).

Hoy en dia hay varias maneras de enfrentarse al tema de
la modelacién de la vegetacion. La mayoria de los modelos
hidrolégicos son capaces de representar correctamente los
procesos hidrologicos a escala de cuenca, pero consideran
la vegetacion como un parametro estatico. Los escenarios
de cambio climatico para el siglo XXI del IPCC predicen
modificaciones tanto en el régimen de precipitaciones
como de temperaturas, es decir, los principales inputs de
los modelos hidroldégicos. Cabe esperar que cambios en las
temperaturas y contenido de humedad en el suelo den lugar
a cambios en la cubierta vegetal. Para tener en cuenta estas
eventualidades, se han desarrollado los modelos de
vegetacion dinamica acoplados a los modelos de superficie.
Estos modelos tienen una base fisica y fisiologica, pero
requieren una gran cantidad de datos y pardmetros (Dawes
et al., 1997; Mackay y Band, 1997; Cao y Woodward,
1998; Montaldo et al., 2005). Quevedo y Francés (2005) y
Quevedo (2010) desarrollaron un modelo conceptual
dindmico de vegetacidon-suelo (llamado HORAS),
especificadamente diseflado para los ecosistemas aridos y
semiaridos, que necesita una limitada cantidad de inputs y
utiliza un namero reducido de parametros. El modelo
HORAS, pensado a escala de parcela, se utilizara en este
estudio a escala distribuida y acoplado al modelo
hidrolégico conceptual TETIS (Vélez et al. 2009, 2007;
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Francés et al.,, 2007, 2002) para la simulacion de la
dindmica de la vegetacion en la cuenca de Valdeinfierno
(Espaiia). El acoplamiento de los dos modelos, hidrologico
y de vegetacion, da origen al modelo TETIS-VEG, modelo
conceptual distribuido para la simulacion de las diferentes
componentes de la escorrentia y de las dinamicas de la
vegetacion.

2.- Caso de estudio y datos disponibles

La cuenca de Valdeinfierno (latitud 37°48°N, longitud
1°57°0) se sitta en la provincia de Almeria, a excepcion de
sus extremos oriental, en que se encuentra la presa de
Valdeinfierno, y septentrional, que pertenecen a la
provincia de Murcia. Tiene una superficie de 429 km? y
estd drenada por el rio Luchena, afluente del rio
Guadalentin, en la cuenca del rio Segura.

El clima es semiarido. La precipitacion media anual,
registrada en la estacion hidrometeoroldgica de la presa de
Valdeinfierno en el periodo 1933-2009, es de 328 mm. Las
temperaturas medias mensuales varian entre los 6°C en
enero y los 23°C en julio y agosto. La evapotranspiracion
potencial (ETP) anual, calculada con la ecuacion de
Hargreaves (Hargreaves y Samani, 1985), resulta
aproximadamente de 1180 mm, valor notablemente
superior al de la precipitacion media anual, confirmando el
caracter semiarido del clima de la zona.

La cobertura vegetal del suelo se reparte entre bosque de
coniferas (33% de la superficie), matorral (9%), matorral
mixto bosque (18%) y cultivos agricolas (39%). Las zonas
urbanas y de suelo desnudo ocupan el 1% de la superficie
total.

Para la implementacion del modelo hidrolégico y de
vegetacion se ha discretizado el dominio espacial en celdas
de 250 m de lado.

embalse de

Valdeinfierno

Fig.1. Delimitacion de la cuenca de Valdeinfierno; posicion de las
estaciones hidrometeoroldgicas y del embalse de Valdeinfierno.

En la Fig.l1 se evidencian los limites de la cuenca de
Valdeinfierno y la posicion de las estaciones
hidrometeoroldgicas cuyos datos han sido utilizados en
este estudio. Los datos de caudal con los que se han
contrastado los resultados del modelo hidrolégico han sido
calculados a partir de los niveles en el embalse de
Valdeinfierno.
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Fig.2. Resultado de la calibracion y de la validacion hidrologica.

Los datos hidrometeorologicos y de aforo utilizados para
la calibracion y validacion del modelo hidrologico se
refieren a los aflos 1971-2009 (Fig.2). Se consideraron los
afios 2001-2002 para la calibracion (RMSE=0.4, indice
Nash-Sutcliffe=0.32) y los deméas afios para la validacién
(RMSE=1.8, indice Nash-Sutcliffe=0.38). Desde el punto
de vista hidroldgico, la calibracidon no resulta excelente, a
causa de errores importantes en los datos de precipitacion y
de caudal; sin embargo, la reproduccion de las
caracteristicas hidrologicas de la cuenca se considera
suficiente para el uso de sus simulaciones en el submodelo
de vegetacion. El hecho de que el indice de Nash-Sutcliffe
no empeora en validacion indica que la calibracion es
robusta. El modelo de vegetaciéon se ha calibrado y
validado en el periodo 2001-2009 en el que se dispone de
imagenes satelitales MODIS de NDVI (Normalized
Difference Vegetation Index; resolucion 250 m, 16 dias)
con las cuales se han podido contrastar los resultados del
modelo. En la seccion 3 se exponen los resultados
obtenidos en el proceso de calibraciéon y validacion.

En el intervalo de afios 2001-2009 se evidencia una
correlacion espacial negativa (r medio = -0.18) y
significativa (nivel de significancia 1%) entre los valores
de NDVI y los valores de insolacion en las zonas cubiertas
por bosque de coniferas. Esta correlacién se ha calculado
en cada paso temporal (16 dias), comparando los valores de
NDVI e insolacion de las celdas en las que se ha
subdividido la cuenca (250 x 250 m). En las zonas de
matorral o matorral mixto bosque no se evidencia una
correlacion clara.

3.- Descripcion del modelo
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El modelo TETIS (Vélez et al. 2009, 2007; Francés et al.,
2007, 2002) es un modelo hidrolégico conceptual y
distribuido con parametros con significado fisico. El
calculo de la produccion de la escorrentia se basa en la
realizacion de un balance hidrico en cada celda,
suponiendo que el agua se distribuye en cinco tanques
conectados entre si  (almacenamiento  estatico,
subsuperficial, gravitacional, acuifero y cauce). En el
modelo acoplado TETIS-VEG, el modelo hidrologico
proporciona como input al submodelo de vegetacion la
cantidad de agua presente en el tanque de almacenamiento
estatico, que es el agua retenida por las fuerzas de
capilaridad en la zona superior del suelo y que s6lo puede
salir de éste a través de la transpiracion de las plantas o de
la evaporacion directa desde el suelo. Este tanque
corresponde a la zona no saturada del suelo; la vegetacion
actua directamente sobre el balance de este importante
compartimiento, influyendo sobre la distribucion del agua
en el suelo.

El modelo HORAS, presentado en detalle por Quevedo y
Francés (2005) y Quevedo (2010), tiene una estructura
similar al modelo TETIS, utilizando dos tanques que
representan la interceptacion de lluvia por la cubierta
vegetal y el agua en la zona capilar del suelo. En HORAS,
para simular el desarrollo de la vegetacion, se ha definido
la variable de estado R, denominada biomasa foliar
relativa. Los valores de R estan dentro del intervalo [0-1].
Si R es igual a 0 se admite que no hay vegetacién y que
toda la humedad en el suelo esta disponible para la
evaporacion desde el suelo; por el contrario, si R es igual a
1, la vegetacion se halla en su estado de desarrollo maximo
y la transpiracién T corresponde al valor maximo que le
permita la humedad del suelo y la evapotranspiracion
potencial residual.

La ecuacion original se compone de un término de
crecimiento que depende de la transpiraciéon y un término
de muerte que depende de la misma biomasa foliar relativa
Ry del estrés hidrico {:

o 1] ks 0
Los parametros a calibrar son a, razén entre la asimilacién
maxima de carbono y la biomasa potencial de hojas, T,
intensidad maxima de transpiracidon, ¢, coeficiente de
forma, ¢, coeficiente de efectos no lineales y ke,
comprende 5 coeficientes de caida estacional de hojas,
resultando la primavera subdividida en dos periodos
distintos. El estrés hidrico depende de la insolacion a través
de la ETP, que esta corregida para incluir el efecto de la
cantidad de radiacion solar recibida en cada celda segiin su
orientacion de ladera (Medici et al., 2008).

Considerando el funcionamiento del modelo y teniendo
en cuenta que la correlacion entre insolaciéon y NDVI
resulta significativa sélo en el caso de cobertura vegetal de
bosque de coniferas, se ha decidido calibrar y testar el
modelo s6lo en las zonas de pinar. Siendo perennes las
especies consideradas, se elimina en la ecuacidn diferencial
de R el término de caida de hojas estacional y se considera
un Unico parametro k,, constante en el tiempo, que
controla la caida de hojas por estrés hidrico:

dt T

En este trabajo se ha decidido probar también un modelo
que considere un crecimiento logistico de la poblacion, por
su amplio uso en la modelizacion de dindmicas
poblacionales (Werker y Jaggard, 1997):

aR _ LT Ry -k o 3)
i _a(mej (1-R) —k, 'R
Se introduce de esta forma un sexto parametro a calibrar,
a. Se tendra que evaluar si este segundo modelo comporta
una mejoria en la simulacién de la dindmica de la
vegetacion y, en este caso, si la mejora justifica la
introduccion de un parametro adicional, teniendo en cuenta
el principio de parsimonia estadistica de Occam.

dR _ O{TJ kLCR 2)

4.- Resultados del proceso de calibracion y validacion

Como se ha comentado anteriormente, se encontrd una
correlacion significativa entre insolacion y NDVI. Se ha
considerado por lo tanto oportuno dividir la superficie
boscosa en 4 clases, segtin su insolacion. En general, aparte
de los casos en los que la topografia influye con efectos de
sombra, en la primera clase se hallan las celdas (dimensioén
250 x 250 m) con orientacioén hacia el norte, en la cuarta
clase las celdas con orientacion hacia el sur, y en la
segunda y tercera clase las celdas con orientaciones
intermedias. Las celdas de cada clase, por lo tanto, reciben
una insolacion relativamente homogénea, lo cual nos hace
suponer que tendran un comportamiento similar desde el
punto de vista del desarrollo de la vegetaciéon. Se ha
decidido analizar estas cuatro clases porque, siendo el
modelo conceptual, no se pretende reproducir con nivel de
detalle de celda ni los flujos del ciclo hidrolégico, ni las
dindmicas de la vegetacion.

La calibracion de los dos modelos propuestos se efectud
manualmente, intentando maximizar en el tiempo la
correlacion entre el R medio de cada clase y la
correspondiente media de NDVI. Cabe destacar que la
variable de estado R y el indice de vegetacion NDVI no
representan exactamente la misma caracteristica fisica; se
simula una capacidad de transpiraciéon respecto a la
capacidad potencial maxima de la especie en cuestion, y se
mide “cuanto es verde” la superficie considerada. Sin
embargo, ambas variables se refieren al estado de la
vegetacion y por lo tanto se intenta maximizar la
correlacion entre las dos en el proceso de calibracion del
modelo de vegetacion.

Para reproducir la variabilidad espacial inicial de la
vegetacion se asignd a la variable de estado R, en cada
celda, el respectivo valor de NDVI. Fue necesario
consecuentemente considerar el primer afio (septiembre
2001 — septiembre 2002) de simulacion como periodo de
puesta en marcha del modelo, para que las condiciones
iniciales no afectaran demasiado los resultados. Se utilizd
el periodo entre septiembre 2007 y octubre 2009 para la
calibracion del modelo de vegetacion. La Tabla 1 muestra
los valores obtenidos por calibracion de los parametros del
modelo descrito por la Ec. (2).
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Tabla 1. Valores de los parametros del modelo descrito por la Ec. (2),
resultantes del proceso de calibracion.

Parametro Descripcion Valor
Ty [mm] Intensidad maxima de transpiracion 4.70
c[-] Coeficiente de forma 0.054
Razon entre asimilacion maxima de
o[-] carbono y biomasa potencial de hojas 0.0026
q[-] Coeficiente de efectos no lineales 3
K [day'] Coeficiente de calrda_ de hojas por estrés 0.004
hidrico

Correlacidn espacial

1
T AN

08
07
0B
05
sep-02 sep-03 sep-04 sep-05 sepB sep-07 sep-08 sep-09

Fig.3. Correlacion cruzada de Kendall entre los valores medios de R y de
NDVI de cada clase a lo largo del tiempo para el modelo descrito por la
Ec. (2).

Los valores del indice de correlacion cruzada de Pearson
entre las series temporales de los valores medios de R y
NDVI para cada clase (desde la menos insolada a la mas
insolada) en el periodo de calibracion son respectivamente
0.31; 0.41; 0.46; 0.48 (p<0.01). En el periodo de validacion
la correlacion resulta respectivamente 0.20; 0.29; 0.30;
0.26 (p<0.01). En la Fig. 4 se visualizan las curvas que han
dado origen a estos resultados en calibracion y validacion.
En cada paso de tiempo, se ha ademas evaluado la
capacidad del modelo de reproducir la variabilidad espacial
del NDVI observado. Para ello se ha calculado la media de
la correlacion cruzada de Kendall entre los valores medios
de R y de NDVI de cada una de las 4 clases previamente
definidas, obteniendo una valor muy alto, de 0.95 (Fig.3),
lo cual significa que el modelo logra simular
adecuadamente las diferencias entre estas clases en el
espacio y a lo largo del tiempo.

En la Fig. 4 se nota un retraso en la simulacion de los
minimos y maximos de la variable R con respecto a los
minimos y maximos de NDVI, en la mayoria de los afios
simulados. Este desfase seria aceptable en el caso en que se
demostrara que la transpiracién de las plantas tuviera una
inercia mayor respecto al NDVI, que es una medida mas
bien de su “aspecto verde” que de biomasa.

Para mejorar la sincronizacion del R y del NDVI se ha
probado el modelo logistico, representado por la Ec. (3).
En calibracion y validacion se han utilizado los mismos
intervalos temporales elegidos para probar el modelo
precedente. En la Tabla 2 se muestran los valores de los
parametros del modelo logistico obtenidos por calibracion.
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Fig.4. Resultado de calibracion y validacion del modelo descrito por la
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para cada clase. Las clases son ordenadas desde la menos insolada a la
mas insolada.

Tabla 2. Valores de los parametros del modelo descrito por la Ec. (3),
resultantes del proceso de calibracion.

Parametro Descripcion Valor
Tinx [mm] Intensidad maxima de transpiracion 5
c[-] Coeficiente de forma 0.001
a[-] Exponente del factor (1-R) 0.4
Razon entre asimilacion maxima de
o[ carbono y biomasa potencial de hojas 0.0045
q[-] Cocficiente de efectos no lineales 3
Koo [day”] Coeficiente de caida de hojas por estrés 0.0033

hidrico

Los valores del indice de correlacién cruzada de Pearson
entre las series temporales de los valores medios de R y
NDVI en cada clase son respectivamente: 0.51; 0.56; 0.59;
0.56 (p<0.01). En el periodo de validacion la correlacion
resulta respectivamente: 0.40; 0.49; 0.52; 0.48 (p<0.01)

(Fig. 6).

Correlacion espacial
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Fig.5. Correlacion cruzada de Kendall entre los valores medios de R y de
NDVI de cada clase a lo largo del tiempo para el modelo descrito por la
Ec. (3).

En este caso el modelo empeora ligeramente la
representacion espacial, dando una media de la correlacion
cruzada de Kendall entre los valores medios de R y de
NDVI de cada clase a lo largo del tiempo de 0.93 en lugar
de 0.95 obtenido con el modelo no-logistico (Fig.5).
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Fig.6. Resultado de calibracion y validacion del modelo descrito por la
Ec. (3). En negro los valores de R, en gris los valores de NDVI medios
para cada clase. Las clases son ordenadas desde la menos insolada a la
mas insolada.

5.- Discusion

Ambos modelos presentan una correlacion temporal
positiva y estadisticamente significativa entre los valores
medios de R y NDVI en cada una de las clases
consideradas.

Con el primer modelo se nota una separacidn entre las 4
curvas similar para las dos variables, simulada y medida,
denotando un buen comportamiento del modelo a la hora
de simular las diferencias en el estado de la vegetacion en
zonas con insolacién diferente (Fig.4). De hecho, la
correlacion espacial entre las cuatro clases resulta muy
buena. Por el contrario, la correlaciéon temporal resulta
afectada por un desfase entre las dos variables que se
justificaria solamente demostrando que hay un desfase en
los valores reales de transpiracion, de la que depende el
término de crecimiento en la Ec.2, y NDVI. Es necesario
efectuar ulteriores andlisis para verificar si existe una razoén
fisica que explique este aspecto del comportamiento del
modelo. Se propone, cémo linea futura de investigacion,
comparar los mapas de NDVI disponibles con datos de
evapotranspiracion real obtenidos por satélite.

Por lo que se refiere al segundo modelo (ecuacién de tipo
logistico) se nota una mejora sustancial respecto al modelo
precedente desde el punto de vista de la correlacion
temporal de las medias de R y NDVI de cada una de las
clases. El desfase notado en la Fig.4 se presenta en este
caso de forma menos acentuada, y solamente en los afios
2004 y 2005. La correlacion espacial empeora ligeramente
y la reproduccién de las diferencias en el estado de la
vegetacion entre las 4 clases no es tan marcada como en el
caso del uso de la Ec. (2), a parte en los picos de mayor
desarrollo de la vegetacion. En particular, en los tramos
ascendentes del grafico de R (Fig.6) las cuatro curvas
tienden a confundirse entre si, determinando una
disminucion de la correlacion espacial.

6.- Conclusiones

Se ha presentado el modelo conceptual distribuido

TETIS-VEG resultante del acoplamiento del modelo
hidrologico TETIS y del modelo de vegetacion HORAS.

El modelo simula el crecimiento de la vegetacion
considerando una dependencia de la transpiracion y el
decaimiento de las hojas proporcionalmente al estrés
hidrico. La ETP, calculada a partir de los datos registrados
por las estaciones meteoroldgicas, se corrige teniendo en
cuenta la mayor o menor insolacion que cada celda recibe
debido a factores topograficos.

Se ha comprobado el funcionamiento del modelo en la
cuenca de Valdeinfierno (Espafia), contrastando los
resultados de la simulacion de las dinamicas de la
vegetacion con datos de NDVI registrados por sensores
satelitales.

En la zona de estudio se evidencia una correlacion
espacial negativa, estadisticamente significativa, entre el
valor de insolacion de cada celda y el respectivo valor de
NDVI para las zonas con cobertura vegetal de coniferas.

Se han dividido las celdas que presentan cobertura vegetal
de coniferas en 4 clases, segun la insolacion recibida.

Para la modelizacion de la vegetacion se ha testado la
ecuacion original del modelo HORAS (Ec. (2)) y una
ecuacion de tipo logistico (Ec. (3)).

La ecuacion original demuestra un muy buen
comportamiento a la hora de representar las diferencias en
la densidad de vegetacion segin la insolacion. La
correlacion temporal entre los valores de R y NDVI es
positiva y estadisticamente significativa. Se evidencia, no
obstante, un desfase entre maximos y minimos de las
variables simuladas y medidas que se podria explicar
solamente si se demostrara un desfase similar entre la
transpiracion real y el NDVI.

El modelo con ecuacién de tipo logistico presenta un
desfase temporal entre R y NDVI casi nulo; la correlacion
temporal entre las dos variables resulta, de hecho, mas alta
que con el modelo original. Sin embargo, empeora la
simulacion de las diferencias entre densidades de
vegetacion segun la insolacion.

Son necesarias ulteriores verificaciones para poder elegir
el modelo que mejor reproduzca la dinamica de la
vegetacion. Puede que, segun el objetivo del estudio, sea
recomendable el uno o el otro modelo.
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