

High return period annual maximum reservoir water level quantiles estimation using synthetic generated flood events.

Félix Francés, Rafael García-Bartual and Gianbattista Bussi

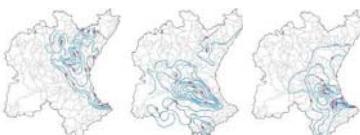
Universitat Politècnica de València, Research Institute of Water and Environmental Engineering, Valencia, Spain

lluvia.dihma.upv.es - ffrances@hmc.upv.es

1 - Introduction

Limitations of the “Design Flood” concept for dam design:

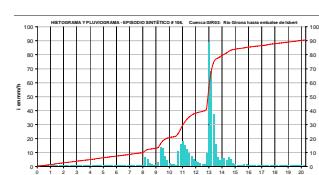
- The **flood exceedance probability** is assumed to be **equal** to the exceedance **probability of the total accumulated precipitation**;
- The representation of the **space-time structure** of real storms is not correct.


Aim of the work:

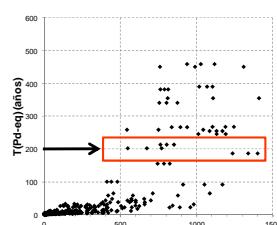
In this work we propose a new methodology for hydrological dam design based on a trivariate statistical model, whose variables are:

- Annual maximum daily precipitation
- Basin initial soil moisture
- The variable of interest (reservoir level, volume, inflow/outflow discharge, ...)

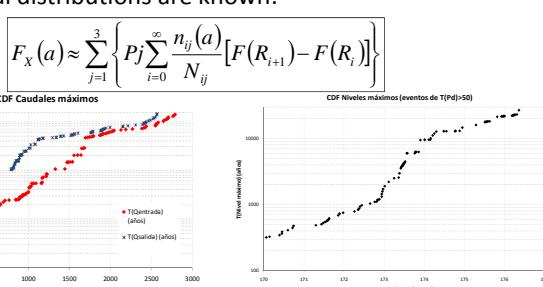
Case-study: Marina Alta and Marina Baja (Alicante – Spain)


3 - Generation of synthetic storms

Real storms (gauged data) for model parameters estimation.


RAINGEN (Salsón and García-Bartual, 2003)

The rainfall stochastic model (Rodríguez-Iturbe and Eagleson, 1987) represents **space-time patterns** and internal structures of Mediterranean rainfall fields.


- 368 space-time rainfall events
- 10-mins time aggregation
- 1x1 km² space aggregation
- Return period assigned based on **daily averaged precipitation**.

5 - Probability estimation

The max discharges corresponding to storms with the **same daily precipitation (Pd)** **ranges** depends on **space-time storm structure** and **initial basin moisture conditions**.

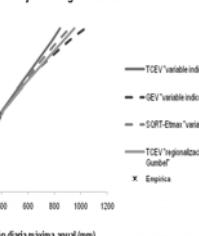
Multivariate statistical model of R (precipitation), X (variable) and M (moisture state), given that R and M are independent and their marginal distributions are known:

Empirical cdf of: max discharge (in/out), max reservoir level, ...

2 - Annual max daily rainfall analysis

Frequency analysis of maximum daily precipitation in a regional framework:

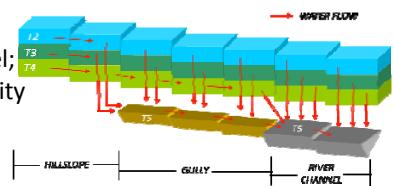
- Regional **homogeneity** has been checked.


-Regionalization methods:

- the index-variable method, for the GEV, SQRT-ETmax and TCEV distribution functions;
- the local Gumbel regionalization with the TCEV distribution function (Rossi et al., 1984);

The **TCEV with Gumbel regionalization**

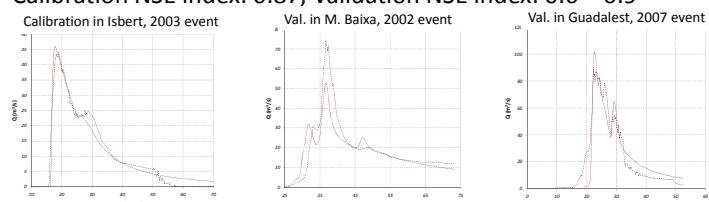
was selected, because the physical meaning of the TCEV basic assumption of two different populations (ordinary and extraordinary events), and higher number of extraordinary events detected by the Gumbel regionalization.


Ajustes Pego Convento

4 - Hydrological modeling

TETIS 8.1 model (Francés et al., 2007):

- distributed and conceptual model;
- reproduction of spatial variability of the hydrological cycle;
- space scale effect reduction;
- easily coupled with RAINGEN.

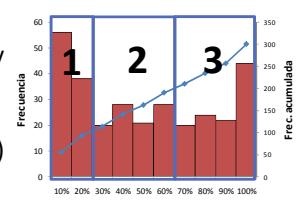


5 minutes time-step modeling:

Calibration and validation:

- 7 flood events, 6 stream gauges

- Calibration NSE index: 0.87, Validation NSE index: 0.6 – 0.9



Daily time-step modeling:

Basin soil moisture frequency analysis by continuous simulation of 67 year.

3 representative **initial moisture states**:

- (1) **DRY** (P=0.3), (2) **MEDIUM** (P=0.4), (3) **WET** (P=0.3)

Result: 368 storms x 3 initial state = 1104 hydrographs

6 - References

- Francés, F. I. Vélez and J. Vélez, 2007. Split-parameter structure for the automatic calibration of distributed hydrological models. *Journal of Hydrology*, 332, 226-240.
- Rodriguez-Iturbe, I. and Eagleson, P.S.,1987. Mathematical models of rainstorm events in space and time. *Water Resources Research*, 23 (1) pp. 181-190.
- Rossi, F., Fiorentino, M., and Versace, P., 1984. Two-Component Extreme Value Distribution for Flood Frequency Analysis. *Water Resour. Res.*, 20 (7), 847-856.
- Salsón, S. and R. García-Bartual, 2003. A space-time rainfall generator for highly convective Mediterranean rainstorms. *Natural Hazards and Earth System Sciences*, 3, 103-114.